
GEOSPLATTING: TOWARDS GEOMETRY GUIDED
GAUSSIAN SPLATTING FOR PHYSICALLY-BASED IN-
VERSE RENDERING

Kai Ye1,3, Chong Gao2, Guanbin Li2, Wenzheng Chen1,3 & Baoquan Chen1,3

1Peking University, 2Sun Yat-sen University, 3State Key Laboratory of General AI

ABSTRACT

We consider the problem of physically-based inverse rendering using 3D Gaussian
Splatting (3DGS) representations Kerbl et al. (2023b). While recent 3DGS meth-
ods have achieved remarkable results in novel view synthesis (NVS), accurately
capturing high-fidelity geometry, physically interpretable materials and lighting
remains challenging, as it requires precise geometry modeling to provide accurate
surface normals, along with physically-based rendering (PBR) techniques to en-
sure correct material and lighting disentanglement. Previous 3DGS methods resort
to approximating surface normals, but often struggle with noisy local geometry,
leading to inaccurate normal estimation and suboptimal material-lighting decom-
position. In this paper, we introduce GeoSplatting, a novel hybrid representa-
tion that augments 3DGS with explicit geometric guidance and differentiable PBR
equations. Specifically, we bridge isosurface and 3DGS together, where we first
extract isosurface mesh from a scalar field, then convert it into 3DGS points and
formulate PBR equations for them in a fully differentiable manner. In GeoSplat-
ting, 3DGS is grounded on the mesh geometry, enabling precise surface normal
modeling, which facilitates the use of PBR frameworks for material decompo-
sition. This approach further maintains the efficiency and quality of NVS from
3DGS while ensuring accurate geometry from the isosurface. Comprehensive
evaluations across diverse datasets demonstrate the superiority of GeoSplatting,
consistently outperforming existing methods both quantitatively and qualitatively.

1 INTRODUCTION

The inverse rendering task, i.e., recovering 3D attributes such as geometry, spatially-varying materi-
als, and lighting from multi-view images or videos, has been a long-standing goal in computer vision
and graphics. It plays a critical role in numerous industrial applications, including film production,
gaming, and VR/AR, for photo-realistic novel-view synthesis and immersive user interactions. This
task is typically approached using carefully designed 3D representations Mildenhall et al. (2020);
Müller et al. (2022); Wang et al. (2021); Shen et al. (2021; 2023) coupled with the corresponding
differentiable rendering techniques Boss et al. (2021a); Verbin et al. (2022a); Chen et al. (2019);
Laine et al. (2020). While great progress has been made recently Munkberg et al. (2022); Jiang
et al. (2023); Gao et al. (2023), efficiently and accurately capturing various 3D attributes remains
challenging due to the complexities of light transport in real-world environments, including intricate
local geometry, non-Lambertian surface, complex lighting conditions, occlusions, etc.

The key to tackling the inverse rendering task lies in effectively modeling the underlying 3D geome-
try, where Physically-Based Rendering (PBR) techniques can be applied to disentangle materials and
lighting. Numerous prior works have developed various 3D representations and their corresponding
differentiable rendering equations to address this challenge, each offering unique advantages and
limitations. Implicit representations (e.g., NeRF Mildenhall et al. (2020); Verbin et al. (2022b)) are
well-suited for novel view synthesis but are computationally expensive and incompatible with ex-
isting graphics pipelines. In contrast, explicit representations (e.g., mesh Munkberg et al. (2022))
provide explicit geometry, allowing for well-defined rendering techniques, facilitating tasks like re-
lighting and material editing. However, optimizing explicit representations is challenging, especially
when dealing with complex geometries like thin structures. More recently, 3D Gaussian Splatting
(3DGS) Kerbl et al. (2023b) has emerged as a efficient 3D representation for high-quality novel-view

1

ar
X

iv
:s

ub
m

it/
59

69
59

7
 [

cs
.C

V
]

 3
1

O
ct

 2
02

4

NVS Normal Albedo Roughness Metallic Lighting

O
ur

s
29

.7
dB

N
V

di
ff

re
c

26
.8

dB
G

S-
Sh

ad
er

28
.8

dB

Figure 1: We propose GeoSplatting, a novel inverse rendering approach that augments Gaussian
Splatting with explicit geometric guidance. GeoSplatting enables more accurate geometry recovery,
and PBR material and lighting decomposition, achieving state-of-the-art performance in novel view
synthesis. Note that our method and NVdiffrec Munkberg et al. (2022) both adopt standard split-sum
PBR model, while GS-Shader Jiang et al. (2023) uses a modified version where albedo entangles
with lighting. Please zoom in for details.

synthesis. However, vanilla 3DGS is not designed to provide accurate geometry or disentangled ma-
terials, limiting its applicability to inverse rendering tasks. To tackle this challenge, various methods
have studied assigning a normal direction to each 3DGS point to model local geometric surfaces,
along with a PBR formula using the approximated normals Jiang et al. (2023); Shi et al. (2023); Gao
et al. (2023). However, these approaches offer only approximations of true normals, and as a result,
may struggle with local minima in regions of complex geometry.

In this paper, we propose GeoSplatting, a more principled solution that leverages the strengths of
both explicit representations and 3DGS for the inverse rendering task. At the core of GeoSplatting is
a differentiable adaptor that integrates differentiable isosurface techniques Shen et al. (2021; 2023)
with 3D Gaussian Splatting. Specifically, we first utilize the differentiable isosurface techniques to
extract a mesh from a scalar field that we want to optimize. We then introduce MGadapter, i.e.,
Mesh-to-Gaussian-adaptor, that samples 3D Gaussian points on the mesh surface in a differentiable
manner, naturally grounding the location of each Gaussian points on the surface geometry, from
which we could estimate precise normal for each point. To render the sampled 3D Gaussian points,
we design an efficient and differentiable PBR framework, leveraging the split-sum model Karis
(2013) and applying it into the 3D Gaussian points. During training, since all of the operations are
differentiable, we are able to train our model end-to-end.

Our GeoSplatting offers several advantages over both 3DGS and explicit mesh-based representa-
tions. Compared to the vanilla 3DGS and its variants, our approach provides explicit geometric
guidance from the isosurface, enabling more accurate normal estimation, which is crucial for in-
verse rendering optimization. On the other hand, compared to the mesh representations Munkberg
et al. (2022), GeoSplatting leverages the high efficiency and superior rendering quality inherited
from 3DGS. Moreover, while the concept of constraining 3DGS with geometry is not new Yu et al.
(2024); Xiang et al. (2024), existing methods typically rely on a discrete optimization strategy where
the implicit SDF field Wang et al. (2021) and Gaussian points are learned separately. In contrast,
GeoSplatting explicitly guide Gaussian points with the isosurface and can be optimized in an end-
to-end fashion, reducing training time and improving the inverse rendering quality.

We conduct extensive experiments to demonstrate the effectiveness of our method, where GeoSplat-
ting achieves new state-of-the-art training efficiency and inverse rendering performance on both the
NeRF dataset and the DTU real-world dataset. We showcase that GeoSplatting exhibits improved
geometry, more precise material and lighting disentanglement, and superior novel view synthesis
compared to previous Gaussian Splatting baselines.

2 RELATED WORK

3D Reconstruction Early works for 3D reconstruction primarily utilized structure-from-motion
techniques to recover geometry, i.e., estimating sparse or dense colored point clouds Schonberger &
Frahm (2016); Fisher et al. (2021). Later, Neural Radiance Field (NeRF) Mildenhall et al. (2020)
represented scenes using implicit functions and leveraged differentiable volume rendering Drebin
et al. (1988) to reconstruct geometry and radiance, achieving highly detailed novel view synthe-

2

FlexiCubes

 Scalar Field Mesh Gaussian points Colored Gaussians Render result

GT image

Image space loss

Forward

Albedo

ResidualMetalic

Roughness
EnvLight

Shading Attribute

Backward

Direct Light
Normal

View Direction

MGAdapter PBR (split-sum) Splatting

Figure 2: Pipeline. GeoSplatting first extracts an intermediate mesh from the scalar field, upon
which Gaussian points are sampled and rendered using PBR equations. Finally, they are composited
into images through the Gaussian rasterization pipeline. The entire process is fully differentiable.

sis. While NeRF encodes BRDF in a single radiance field, subsequent work has extended it by
enhancing both the representations and the rendering equations to introduce more physical con-
straints, allowing the separation of physically-based rendering attributes such as normals, materials,
and lighting Verbin et al. (2022a); Boss et al. (2021a;b); Yariv et al. (2021); Wang et al. (2021);
Zhang et al. (2021a); Liang et al. (2023); Ge et al. (2023). However, the use of implicit representa-
tions and volume rendering in these methods makes them difficult to integrate into existing graphics
pipelines, as well as require dense sampling that leads to slow rendering speed Müller et al. (2022).
On the other hand, explicit representations (e.g., mesh Shen et al. (2021; 2023)) combined with
differentiable rendering techniques Chen et al. (2019; 2021); Laine et al. (2020) have demonstrated
their ability to extract explicit geometry, material, and lighting from multi-view images Munkberg
et al. (2022); Hasselgren et al. (2022). These approaches enable explicit decomposition, allowing
their results to be directly used in graphics engines like Maya or Blender Autodesk, INC.; Commu-
nity (2018). However, mesh optimization is typically more challenging than implicit fields, which
often struggles with complex geometry (e.g., thin structures), and is generally limited to object-
level reconstructions. Recently, 3D Gaussian Splatting (3DGS) Kerbl et al. (2023a) has emerged
as a powerful representation for novel view synthesis. However, its geometry is often misaligned
with the ground truth surface and prone to floaters. To improve this, SuGaR Guédon & Lepetit
(2024) introduced a set of regularizations to ensure Gaussian points closely adhere to the surface.
2DGS Huang et al. (2024) squeezed 3D Gaussian ellipsoids into 2D Gaussian surfaces and applied
dist loss Barron et al. (2022) to improve surface accuracy. GSDF Yu et al. (2024) and Gaussian-
Rooms Xiang et al. (2024) jointly trained 3DGS with implicit SDF fields to supervise each other.
However, these approaches keep 3DGS and SDF separate, which may lead to local minima. In
contrast, we combine explicit mesh representation and 3DGS in a unified framework, training the
networks in an end-to-end fashion and enabling material and lighting decomposition.

Inverse Rendering with Gaussian Splatting While the vanilla 3DGS is not designed for inverse
rendering tasks, a branch of research extends it for estimating materials and lighting Gao et al.
(2023); Jiang et al. (2023); Shi et al. (2023). The key challenge lies in accurately modeling local
geometry to obtain precise normal in the rendering equations. Different methods have employed
various strategies to address this issue. For instance, R3DG Gao et al. (2023) learns additional nor-
mal attributes and regularizes normal directions using rendered depth maps. GS-Shader Jiang et al.
(2023) utilizes the shortest axis direction, while GIR Shi et al. (2023) employs eigen decomposi-
tion to determine surface orientations. These methods also incorporate the Disney BRDF McAuley
et al. (2012); Burley (2012) with split-sum simplification Karis (2013) and consider indirect lighting
through ray tracing or residual terms. In contrast, our approach bridges isosurface and Gaussian to-
gether, which naturally results in more accurate local geometry and normal directions, and therefore
bringing better inverse rendering performance.

3 METHODOLOGY

We now present a detailed description of our method. In Sec. 3.1, we introduce geometry-guided
Gaussian Splatting, where the Gaussian points are generated on the isosurface. Next, in Sec. 3.2,
we extend the standard Gaussian rendering equations by incorporating physically-based rendering
(PBR) to account for higher-order lighting effects. Finally, in Sec. 3.3, we discuss the training
strategies, loss functions, and other key implementation details.

3

3.1 GEOMETRY GUIDED GAUSSIAN POINTS GENERATION

Background In the vanilla 3DGS Kerbl et al. (2023b) paper, a Gaussian ellipsoid is represented
by a full 3D covariance matrix Σ and its center position µ: G(x) = e−

1
2 (x−µ)TΣ−1(x−µ), where

x is the location of a 3D point. To ensure a valid positive semi-definite covariance matrix, Σ is
decomposed into the scaling matrix S and the rotation matrix R that characterizes the geometry
of a 3D Gaussian. Beyond µ, S and R, each Gaussian maintains additional learnable parameters
including opacity o ∈ (0, 1) and Spherical Harmonic (SH) coefficients in Rk representing view-
dependent colors (k is related to SH order). During optimization, 3DGS adaptively controls the
Gaussian distribution by splitting and cloning Gaussians in regions with large view-space positional
gradients, as well as the culling of Gaussians that are nearly transparent. However, each Gaussian
point is independent to others and lacks global geometry constraints, which often leads inaccurate
surfaces and floaters.

(a) (b) (c)

Figure 3: MGadapter Overview. Given surface
triangles (a), we initially place one Gaussian point
at each vertex (b), then densely draw six Gaussian
points on each face (c).

Method Our goal is to introduce explicit ge-
ometric guidance to 3D Gaussian Splatting.
To this end, we propose GeoSplatting, which
leverages isosurface techniques Shen et al.
(2021; 2023) to constrain Gaussian points to the
mesh surface. Specifically, we hope to optimize
a scalar function ζ : R3 → R, which may be
discretized directly as values at grid vertices or
evaluated from an underlying neural network,
etc. We employ Flexicubes Shen et al. (2023)
as the underlying geometric representation, al-
lowing for the extraction of an intermediate triangle mesh M from ζ in a differentiable manner.

With the intermediate mesh M as the expilcit guidance, we then propose MGadapter T that sam-
ples Gaussian points from surface triangles in a differentiable manner to provide a bridge between
mesh and Gaussian points. Specifically, the MGadapter T constrains the opacity and shape of the
Gaussian points to ensure their alignment with the mesh M.

We first determine the location 3D Gaussian points from the isosurface mesh M. As illustrated in
Fig. 3, we explored various strategies and finally choose to an adaptive way. At the start of the
optimization, since the scalar function ζ is randomly initialized and the initial mesh contains a large
number of small faces, we only assign one Gaussian point to each vertex to reduce memory usage
and accelerate training. As the shape gradually converges, we switch to face-based strategy, where
we empirically place six Gaussian points on each triangle face in order to capture high-frequency
geometric and texture details.

GT Image GT Normal

3DGS Normal Our Normal
Figure 4: Geometry-guided
Normal Estimation.

The opacity for each Gaussian point is set to one, and the po-
sition µ, scale S, and rotation R, along with the normal n, are
determined by the local geometry (vertices or faces):

(µ,S,R,n) = T (M). (1)

Specifically, the position µ is a bary-centric interpolation of
mesh vertices, the normal n equals to the normal of correspond-
ing mesh faces, the scale S and the R are heuristic functions
relative to µ, which ensure that the shortest axis of the Gaussian
point aligns with n and maintain a size that adequately covers
the triangle.

Additionally, since the boundaries of Gaussian ellipsoids extend
beyond their center points µ, we allow µ to move slightly along
the normal direction n to better align with the surface. This sur-
face adjustment v, which is crucial for novel view synthesis, can
be automatically learned via hash grids Müller et al. (2022). Further details of MGadapter can be
found in the Supplementary.

Discussion The geometry-guided MGadapter offers significant advantages over both 3DGS Kerbl
et al. (2023a) and mesh-based representations Munkberg et al. (2022) . First, compared to 3DGS,

4

the geometry guidance from the isosurface provides more accurate geometry and precise surface
normals without any depth or normal regularization terms, as shown in Fig. 4. This, in turn, sig-
nificantly enhances the performance of inverse rendering tasks compared to prior works that rely
on approximated normals. Moreover, transitioning from a mesh representation to Gaussian Splat-
ting, i.e., apply Gaussain-based rendering rather than mesh-based rendering, allows us to leverage
the efficiency and representational capacity of Gaussian Splatting, enabling GeoSplatting to achieve
much faster optimization time and superior novel view synthesis performance compared to NVd-
iffrec Munkberg et al. (2022) as shown in our experiments.

3.2 PHYSICALLY-BASED GAUSSIAN RENDERING

The vanilla 3DGS assigns each Gaussian point a k-order spherical harmonic parameter to represent
basic color and view-dependent rendering effects. In our GeoSplatting, we hope to represent high-
order lighting effects with PBR materials.

Background We utilize the physically-based rendering equation Kajiya (1986) and GGX micro-
facet model Walter et al. (2007) as follow:

Lo(ωo) =

∫
H2

fr(ωi,ωo)Li(ωi)|n · ωi|,dωi , (2)

fr(ωi,ωo) =
a

π
+

D(ωi,ωo)F (ωi,ωo)G(ωi,ωo)

4|n · ωi||n · ωo|
. (3)

In Eq. 2, the outgoing radiance Lo(ωo) in the direction ωo is computed as the integral of the BRDF
function fr(ωi,ωo), the incoming light Li(ωi), and the cosine term |n · ωi|, which accounts for the
angle between the surface normal n and the incoming light direction ωi, over the hemisphere H2.
In Eq. 3, the GGX model defines the BRDF function fr(ωi,ωo) as two components: the diffuse
term a

π and the specular term D(ωi,ωo)F (ωi,ωo)G(ωi,ωo)
4|n·ωi||n·ωo| . The specular term models view-dependent

specular surface reflection using the normal distribution function (NDF) D, the Fresnel term F , and
the geometric attenuation G. To evaluate Eq. 2 efficiently, approximation methods such as split-
sum Karis (2013) or spherical Gaussian Chen et al. (2021) are often used to bypass the need for
extensive Monte Carlo sampling process. Following prior works Munkberg et al. (2022); Shi et al.
(2023), we use a split-sum model:

Lo(ωo) ≈
∫
H2

fr(ωi,ωo)|n · ωi|dωi

∫
H2

Li(ωi)D(ωi,ωo)|n · ωi|dωi . (4)

Eq. 4 enables fast pre-computation. The left BRDF term can be stored in a 2D lookup table and
queried using |n ·ωi| and r, while the right term is represented by pre-integrated environment maps
and can also be queried by r. This allows directly computing outgoing radiance Lo by the material
parameters without any ray sampling, significantly improving rendering speed. For more details of
PBR materials, please refer to Karis (2013); Munkberg et al. (2022).

Method Our goal is to add PBR materials to Gaussian points to produce high-order rendering ef-
fects, while still leveraging the efficient Gaussian rasterization pipeline. To achieve this, we compute
the color of each Gaussian point using PBR equations, after which we take the Gaussian rasterization
to render the final image through alpha composition.

Specifically, we assign each Gaussian point three PBR material parameters: a diffuse color kd =
a
π ∈ R3, a roughness scalar r, and a metallic factor m. The roughness r determines the GGX normal
distribution function (NDF) D, while the metallic factor m controls the specular highlight color ks
by interpolating between plastic and metallic appearances: ks = (1−m)× 0.04+m× kd. Finally,
the color ci of the i-th Gaussian point is computed as:

ci = cdi + csi + cri , (5)
where cdi and csi represent the diffuse and specular components computed using the split-sum model.
In addition, we learn a residual color cri Jiang et al. (2023) to account for high-order indirect light-
ing effects. Once the color computation is complete, we apply the efficient Gaussian rasterization
pipeline to render the points into an RGB image I and an alpha map M :

I =

N∑
i=1

ciαi

i−1∏
j=1

(1− αj), M =

N∑
i=1

αi

i−1∏
j=1

(1− αj), (6)

where α is the projected opacity of each Gaussian. During rendering, we cull Gaussian points on
back faces by checking the angle between surface normals and view directions.

5

Reference PBR Rendering Diffuse cd Specular cs Residual cr (×2.5)
Figure 5: PBR Rendering Decomposition. Our PBR framework successfully disentangles the
materials and lighting, capturing meaningful diffuse, specular and residual terms (Eq. 5). Note the
residual image even learns the inter-reflection effects (the most shiny ball reflects a small green ball).

Discussion Our PBR pipeline enables both high-order PBR effects and efficient rendering speed.
First, the PBR model allows us to capture specular, view-dependent lighting effects. Additionally,
the residual component helps model inter-reflection effects beyond the capabilities of the split-sum
model. Moreover, since the color is computed at each Gaussian point, the fast Gaussian rasteriza-
tion pipeline can be directly employed to generate the final images. Fig. 5 shows examples of the
decomposition of each lighting component of our methods.

3.3 IMPLEMENTATION DETAILS

Modeling PBR Attributes GeoSplatting constrains the shape and opacity of each Gaussian point
based on the corresponding surface triangle, and learns the PBR material attributes by querying
MLPs Müller et al. (2022). Specifically, for the geometry, we optimize a 963 grid using Flexi-
cubes Shen et al. (2023). For each Gaussian point, we query its corresponding surface movement
v, diffuse color kd, roughness r, specular ks and residual color cr from a spatial MLP Müller et al.
(2022) F : (v, kd, r,m, cr) = F (µ). Additionally, we learn a 6 × 512 × 512 × 3 environment map
to model the lighting. Details of the network architecture are provided in the Supplementary.

Loss Functions GeoSplatting is a fully differentiable pipeline that can be trained end-to-end. Thanks
to the geometry guidance, we do not require any surface or normal regularization terms, such as dist
loss Barron et al. (2022) or pseudo depth normal loss Jiang et al. (2023); Gao et al. (2023), and
the network can be supervised by photometric loss. However, similar to NVdiffrec, GeoSplatting
also relies on an object mask loss, as optimizing the surface is more challenging. Specifically, the
photometric loss is computed as: Lphoto = L1 + λssimLSSIM + λmaskLmask, where Lmask =
L2(Mpred,Mgt). Here we set λssim = 0.2 and λmask = 5.0. Furthermore, we add an entropy
loss to constrain the shape, following DMTet and Flexicubes Shen et al. (2021; 2023). To achieve
better decomposition, we apply light regularization and smoothness regularization on kd and ks,
following NVdiffrec and R3DG Munkberg et al. (2022); Gao et al. (2023). The final loss L is a
combination of the photometric loss and the regularization losses: L = Lphoto+λentropyLentropy+
λsmoothLsmooth + λlightLlight. Details are provided in the Supplementary.

Seccond Stage Optimization GeoSplatting optimizes the underlying SDF while producing Gaus-
sian points for image rendering. However, due to grid resolution limitations, we find that mesh-
produced Gaussian points still struggle to capture detailed textures and thin geometric structures.
To address this, we introduce a second-stage optimization where the Gaussian points are freely op-
timized without being constrained by the mesh. In the first stage, the mesh-generated Gaussian
points already provide a refined shape and materials. Building on this, the second-stage optimiza-
tion further enhances geometry and texture details, achieving significant improvements in novel
view synthesis and relighting.

4 EXPERIMENTS

We perform extensive experiments to verify the effectiveness of our inverse rendering method. We
first evaluate novel view synthesis (NVS) in Sec. 4.1, demonstrating our superior performance
over all relightable baselines. Next, we present material decomposition and relighting results of
S4Relight in Sec. 4.2, showcasing our effectiveness in inverse rendering tasks. Additionally, we
report geometric reconstruction accuracy in Sec. 4.3, and ablation studies in Sec. 4.5. Further imple-
mentation details can be found in the appendix. Our method is highly efficient, completing training
within 15-20 minutes for the first stage and 5 minutes for the second stage—on an NVIDIA GTX
4090. All baselines are evaluated on 4090 as well.

6

28.89dB 32.20dB 32.69dB 33.03dB 34.47dB

L
eg

o

30.48dB 31.59dB 32.74dB 34.06dB 34.62dB

M
ic

25.88dB 27.78dB 28.32dB 28.49dB 29.17dB

Sh
ip

NVdiffrec TensoIR R3DG GS-Shader Ours Reference
Figure 6: Qualitative NVS comparison on NeRF dataset. Our method effectively recovers com-
plex geometries, detailed textures, and non-Lambertian appearances, as shown in the sub-windows.

4.1 PERFORMANCE ON NOVEL VIEW SYNTHESIS

Datasets & Metrics. We evaluate NVS performance on the NeRF Synthetic dataset, which includes
8 challenging scenes featuring complex geometry and non-Lambertian materials. Following previ-
ous work, we train on 100 input views and evaluate on 200 test views. We assess NVS quality
using PSNR, SSIM, and LPIPS metrics, along with training and inference times, as shown in Tbl. 1.
Qualitative results are provided in Fig. 6.
Performance & Discussion. We compare our method with both non-relightable and relightable
approaches. Our results achieve new state-of-the-art performance over all relightable techniques as
shown in Tbl. 1. We outperform the second best method almost 1db in PSNR, demonstrating the
effectiveness of our method. Compared to mesh-based representation Munkberg et al. (2022), our
method leverages the representation capability from 3DGS and achieves 3.53 PNSR improvement.
Moreover, it also achieve best optimization efficiency, where each scene takes only 20 minutes.
Fig. 6 shows the qualitative NVS results, where details are highlighted in the sub-windows. Com-
pared to the baselines, our method recovers more detailed geometry (Mic) and better non-Lambertian
appearance (Ship). For more results on the NeRF Synthetic dataset, please refer to the Supp.

Method Relit PSNR↑ SSIM↑ LPIPS↓ Time↓
NeRF* 31.01 0.947 0.081 1380

MipNeRF* 33.09 0.961 0.043 173.4
3DGS 33.17 0.988 0.029 15
2DGS 33.07 0.967 0.025 10.2

TensoIR 29.53 0.944 0.050 270
NVdiffrec 28.79 0.937 0.056 72

GS-IR 28.57 0.922 0.076 21.6
R3DG 30.15 0.954 0.044 141

GS-Shader 31.45 0.959 0.034 63
Ours 32.32 0.962 0.027 20

Table 1: Quantatitive NVS comparison on NeRF dataset (* means copied from original papers).
In the left table, ours results outperform all the relightable baseline methods in terms of both render-
ing quality and training efficiency (measured by average training minutes). In the right figure, we
provide an intuitive overview, with the top-left corner representing superior performance. Notably,
our method achieves the best results among all relightable approaches (indicated by a star marker).

7

Rendering Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 7: Qualitative material decomposition & relighting comparison on Synthetic4Relight
Dataset. Our method successfully recovers accurate albedo and lighting, though the roughness is
slightly affected by indirect inter-reflections. Nevertheless, it still achieves the best relighting effects.

4.2 PERFORMANCE ON OBJECT DECOMPOSITION & RELIGHTING

Datasets & Metrics. We evaluate Material decomposition and relighting performance on the Syn-
thetic4Relight dataset Zhang et al. (2022), which includes 4 challenging scenes with complex non-
Lambertian materials and indirect lighting effects. Following Gao et al. (2023), we assess NVS,
Relighting, Albedo quality using PSNR, SSIM, and LPIPS metrics, along with Roughness MSE, as
shown in Tbl. 2. Qualitative results are provided in Fig. 7.

Performance & Discussion. We compare our method with mesh-based (NVdiffrec) and Gaussian-
based relightable approaches (R3DG, GS-Shader, GS-IR). As shown in Tbl. 2 and Fig. 7, while
our method significantly outperforms the baseline methods in novel view synthesis, we also achieve
state-of-the-art performance in relighting, and albedo assessment, demonstrating superior material
and lighting disentanglement. In terms of roughness, our method achieves comparable performance
to R3DG. This similarity may be attributed to R3DG’s use of ray tracing, which enhances roughness
learning. Since our method provides an intermediate mesh, incorporating ray tracing is straight-
forward and will be explored in future work. In the Supplementary, more qualtitative results are
provided and we further show experiment results from TensoIR Synthetic Dataset Jin et al. (2023).

Method Novel View Synthesis Relighting Albedo Roughness
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓

NVdiffrec 34.99 0.979 0.034 28.89 0.953 0.061 28.66 0.941 0.066 0.026
GS-IR 33.85 0.964 0.050 23.81 0.902 0.086 26.66 0.936 0.085 0.825

GS-Shader 30.26 0.974 0.029 22.32 0.924 0.084 N/A N/A N/A 0.050
R3DG* 36.80 0.982 0.028 31.00 0.964 0.050 28.31 0.951 0.058 0.013

Ours 39.20 0.988 0.013 31.65 0.971 0.032 29.21 0.952 0.062 0.017

Table 2: Quantitative Results on the Synthetic4Relight Dataset (* means copied from original
papers). Our method achieves the best performance in NVS, relighting, and albedo, and on-par
performance in roughness compared to R3DG. Note that GS-Shader does not provide disentangled
albedo but rather a diffuse color merged with lighting, so we leave it as N/A. Also, note that we
apply the albedo scaling introduced in Zhang et al. (2021b) to perform a fair comparison.

4.3 PERFORMANCE ON GEOMETRY RECOVERY

Datasets & Metrics. We evaluate geometry recovery performance on four deliberately selected
scenes: Spot, Damicornis, Lego, and Chair, each chosen for its distinct characteristics. Spot is
highly reflective, Damicornis and Lego feature complex geometries, and Chair contains detailed
textures. Following Munkberg et al. (2022), we assess performance using the Chamfer distance and

8

Scene Reference Ours NVdiffrec NeuS2 2DGS

Sp
ot

D
am

ic
or

ni
s

Figure 8: Qualitative Geometry Comparison. Our method achieves accurate geometry in scenes
with challenging lighting and material conditions (shiny Spot) and complex topology (Damicornis).

F-score, as shown in Tbl. 3. Since our method includes meshes in stage 1 and Gaussian points in
both stages 1 and 2, we provide metrics for each. Qualitative results are shown in Fig. 8.

Performance & Discussion. We compare our method with SDF-based (Neus2), mesh-based (NVd-
iffrec), and Gaussian-based (2DGS) approaches. As shown in Tbl. 3 and Fig. 8, in the highly re-
flective case (Spot), due to the lack of inverse rendering capability, Neus2 and 2DGS fail to capture
the geometry accurately. In scenes with complex geometry, Neus2 achieves better performance,
likely due to its dense ray sampling and marching cube grid size (theirs 5123 v.s. ours 963). For
the complex texture scene (Chair), our method still demonstrates the best performance. Overall, our
approach achieves the best average geometry performance, showcasing the geometry recovery ca-
pability of GeoSplatting. Interestingly, the intermediate mesh provides even more accurate distance
measurements than the Gaussian points. However, in stage 2, further optimization of the points leads
to improved performance.

Method Spot Damicornis Lego Chair Avg.
CD ↓ F-score ↑ CD ↓ F-score ↑ CD ↓ F-score ↑ CD ↓ F-score ↑ CD ↓ F-score ↑

NeuS2 12.43 0.9773 0.12 0.9986 7.03 0.9187 7.94 0.9046 6.88 0.9498
2DGS 39.13 0.6588 0.40 0.9993 13.23 0.9169 3.56 0.9594 14.08 0.8836

NVdiffrec 1.04 0.9921 0.27 0.9974 11.38 0.8506 5.76 0.9359 4.61 0.9440
Ours (Stage1 Points) 0.53 0.9995 16.56 0.9969 11.34 0.9027 4.20 0.9442 8.16 0.9608
Ours (Stage2 Points) 0.49 0.9995 12.40 0.9980 8.71 0.9130 3.11 0.9570 6.17 0.9669

Ours (Mesh) 0.16 0.9997 0.55 0.9985 9.03 0.8886 5.37 0.9254 3.78 0.9530

Table 3: Quantitative results on Geometry Recovery. With each scene normalized to the range
[−1, 1]3, we report the Chamfer distance (scaled by 10−4) and the F-score (using a threshold of
10−3). GeoSplatting achieves the best geometry in challenging rendering cases, such as the reflective
Spot, thanks to its strong inverse rendering capabilities. It performs on par with other state-of-the-art
methods and reaches highest performance on average.

4.4 PERFORMANCE ON REAL-WORLD DATASET

Datasets, Performance & Discussion. Lastly, we show qualitative results on real-world DTU
dataset Aanæs et al. (2016). While GeoSplatting successfully decomposes reasonable geometry
and material, as shown in Fig. 9, the real-world data is still much more challenging than synthetic
data due to the inaccurate camera, complex lighting, and self occlusions. For instance, an overes-
timated roughness can be observed in Scan 65, mainly due to overexposure of input views. More
relighting results and failure cases on DTU dataset are provided in the Supp.

4.5 ABLATION STUDIES.

Second Stage Optimization. The second stage optimization plays a crucial role in improving the
performance of novel view synthesis. On the NeRF Synthetic Dataset, it helps improve the PSNR
from 29.52 to 32.32 (see Tbl. 7 in the Supplementary). The key issue lies in the isosurface’s reliance
on grid sampling (963 for Flexicubes), which struggles to represent detailed geometry and textures.
Therefore, in the second stage, we optimize the Gaussian representation without the constraints of
the mesh, allowing it to fully express its representational power. Moreover, the good initialization in

9

Reference PBR Geometry Alebdo Roughness Metallic

Sc
an

11
8

Sc
an

65
Sc

an
11

4

Figure 9: Qualitative Results on DTU dataset. Our method successfully recovers meaningful
geometry and material on the challenging real-world dataset.

the first stage still guides the optimization toward meaningful decomposition. As shown in Fig. 10,
the second stage significantly enhances the performance on normal leading to improved NVS results.

Stage 1 Stage 2
30.8dB 34.5dB (+3.7dB)

Figure 10: Second Stage Opti-
mization on Lego.

Residual Terms. We find it also helps improve the performance
of novel view synthesis, e.g., in Chair scene the PSNR drops 2dB
without residual terms. GeoSplatting applies a split-sum model
to represent PBR lighting effects. While it achieves delicate de-
composition results, it assumes a single-bounce rendering pro-
cess, i.e., light hits an object and reflects back to the light source
without considering any inter-reflection effects. Moreover, dur-
ing optimization, noise often arises that exceeds the model’s ca-
pacity. The inclusion of residual terms significantly improves
inverse rendering performance by attributing noise and higher-
order lighting effects to the residual terms. As shown in Fig. 5,
it successfully models the inter-reflected small green ball.

5 CONCLUSION

Limitation: While GeoSplatting demonstrates state-of-the-art performance in NVS and relighting
tasks, it still faces several challenges that motivate further research. First, its geometry guidance
is derived from the isosurface. Although this significantly improves the geometry performance of
3DGS, it also requires masks during training and is constrained by grid resolution, which limits its
application to object-level inverse rendering tasks. A promising direction for future work would be
to explore how to eliminate the need for masks and to apply adaptive resolution to accommodate
detailed geometry, enabling its extension to scene-level tasks. Furthermore, GeoSplatting currently
models only single-bounce sepcular lighting, leaving the higher-order effects (e.g., inter-reflections)
to residual terms. Shadows will be baked into albedo as well, resulting in an inaccurate appearance
under relighting conditions. However, since we have access to intermediate meshes, incorporating
ray tracing techniques could enable a more comprehensive decomposition of shadows and inter-
reflections. These areas hold great potential, and we aim to explore them in future work.

Conclusion: We propose GeoSplatting, a novel hybrid representation that enhances 3DGS with
explicit geometric guidance and differentiable PBR equations. GeoSplatting is highly efficient and
has demonstrated state-of-the-art performance on inverse rendering tasks. We will release all the
code to facilitate related research.

10

REFERENCES

Henrik Aanæs, Rasmus Ramsbøl Jensen, George Vogiatzis, Engin Tola, and Anders Bjorholm Dahl.
Large-scale data for multiple-view stereopsis. International Journal of Computer Vision, 120:
153–168, 2016.

Autodesk, INC. Maya. URL https:/autodesk.com/maya.

Jonathan T Barron, Ben Mildenhall, Dor Verbin, Pratul P Srinivasan, and Peter Hedman. Mip-nerf
360: Unbounded anti-aliased neural radiance fields. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pp. 5470–5479, 2022.

Mark Boss, Raphael Braun, Varun Jampani, Jonathan T. Barron, Ce Liu, and Hendrik P.A. Lensch.
Nerd: Neural reflectance decomposition from image collections. In IEEE International Confer-
ence on Computer Vision (ICCV), 2021a.

Mark Boss, Varun Jampani, Raphael Braun, Ce Liu, Jonathan T. Barron, and Hendrik P.A. Lensch.
Neural-pil: Neural pre-integrated lighting for reflectance decomposition. In Advances in Neural
Information Processing Systems (NeurIPS), 2021b.

Brent Burley. Physically-based shading at disney. 2012. URL https://api.
semanticscholar.org/CorpusID:7260137.

Wenzheng Chen, Huan Ling, Jun Gao, Edward Smith, Jaako Lehtinen, Alec Jacobson, and Sanja
Fidler. Learning to predict 3d objects with an interpolation-based differentiable renderer. In
NeurIPS, 2019.

Wenzheng Chen, Joey Litalien, Jun Gao, Zian Wang, Clement Fuji Tsang, Sameh Khalis, Or Litany,
and Sanja Fidler. DIB-R++: Learning to predict lighting and material with a hybrid differentiable
renderer. In Advances in Neural Information Processing Systems (NeurIPS), 2021.

Blender Online Community. Blender - a 3D modelling and rendering package. Blender Foundation,
Stichting Blender Foundation, Amsterdam, 2018. URL http://www.blender.org.

Robert A. Drebin, Loren Carpenter, and Pat Hanrahan. Volume rendering. In Proceedings of the
15th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH ’88, pp.
65–74, New York, NY, USA, 1988. Association for Computing Machinery. ISBN 0897912756.
doi: 10.1145/54852.378484. URL https://doi.org/10.1145/54852.378484.

Alex Fisher, Ricardo Cannizzaro, Madeleine Cochrane, Chatura Nagahawatte, and Jennifer L
Palmer. Colmap: A memory-efficient occupancy grid mapping framework. Robotics and Au-
tonomous Systems, 142:103755, 2021.

Jian Gao, Chun Gu, Youtian Lin, Hao Zhu, Xun Cao, Li Zhang, and Yao Yao. Relightable
3d gaussian: Real-time point cloud relighting with brdf decomposition and ray tracing.
arXiv:2311.16043, 2023.

Wenhang Ge, Tao Hu, Haoyu Zhao, Shu Liu, and Ying-Cong Chen. Ref-neus: Ambiguity-reduced
neural implicit surface learning for multi-view reconstruction with reflection. arXiv preprint
arXiv:2303.10840, 2023.

Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d
mesh reconstruction and high-quality mesh rendering. CVPR, 2024.

Jon Hasselgren, Nikolai Hofmann, and Jacob Munkberg. Shape, Light, and Material Decomposition
from Images using Monte Carlo Rendering and Denoising. arXiv:2206.03380, 2022.

Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and Shenghua Gao. 2d gaussian splatting
for geometrically accurate radiance fields. In SIGGRAPH 2024 Conference Papers. Association
for Computing Machinery, 2024. doi: 10.1145/3641519.3657428.

Yingwenqi Jiang, Jiadong Tu, Yuan Liu, Xifeng Gao, Xiaoxiao Long, Wenping Wang, and Yuexin
Ma. Gaussianshader: 3d gaussian splatting with shading functions for reflective surfaces. arXiv
preprint arXiv:2311.17977, 2023.

11

https:/ autodesk.com/maya
https://api.semanticscholar.org/CorpusID:7260137
https://api.semanticscholar.org/CorpusID:7260137
http://www.blender.org
https://doi.org/10.1145/54852.378484

Haian Jin, Isabella Liu, Peijia Xu, Xiaoshuai Zhang, Songfang Han, Sai Bi, Xiaowei Zhou, Zex-
iang Xu, and Hao Su. Tensoir: Tensorial inverse rendering. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 165–174, 2023.

James T. Kajiya. The rendering equation. SIGGRAPH Comput. Graph., 20(4):143–150, August
1986. ISSN 0097-8930. doi: 10.1145/15886.15902. URL https://doi.org/10.1145/
15886.15902.

Brian Karis. Real shading in unreal engine 4. Technical report, Epic Games, 2013. URL
http://blog.selfshadow.com/publications/s2013-shading-course/
karis/s2013_pbs_epic_notes_v2.pdf.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics (ToG), 42(4):1–14,
2023a.

Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splat-
ting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023b.
URL https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/.

Samuli Laine, Janne Hellsten, Tero Karras, Yeongho Seol, Jaakko Lehtinen, and Timo Aila. Modular
primitives for high-performance differentiable rendering. ACM Transactions on Graphics, 39(6),
2020.

Ruofan Liang, Huiting Chen, Chunlin Li, Fan Chen, Selvakumar Panneer, and Nandita Vijayku-
mar. Envidr: Implicit differentiable renderer with neural environment lighting. arXiv preprint
arXiv:2303.13022, 2023.

Stephen McAuley, Stephen Hill, Naty Hoffman, Yoshiharu Gotanda, Brian Smits, Brent Bur-
ley, and Adam Martinez. Practical physically-based shading in film and game production. In
ACM SIGGRAPH 2012 Courses, SIGGRAPH ’12, New York, NY, USA, 2012. Association
for Computing Machinery. ISBN 9781450316781. doi: 10.1145/2343483.2343493. URL
https://doi.org/10.1145/2343483.2343493.

B Mildenhall, PP Srinivasan, M Tancik, JT Barron, R Ramamoorthi, and R Ng. Nerf: Representing
scenes as neural radiance fields for view synthesis. In European conference on computer vision,
2020.

Thomas Müller. tiny-cuda-nn, 4 2021. URL https://github.com/NVlabs/
tiny-cuda-nn.

Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics prim-
itives with a multiresolution hash encoding. ACM Transactions on Graphics (ToG), 41(4):1–15,
2022.

Jacob Munkberg, Jon Hasselgren, Tianchang Shen, Jun Gao, Wenzheng Chen, Alex Evans, Thomas
Müller, and Sanja Fidler. Extracting Triangular 3D Models, Materials, and Lighting From Im-
ages. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 8280–8290, June 2022.

Johannes L Schonberger and Jan-Michael Frahm. Structure-from-motion revisited. In Proceedings
of the IEEE conference on computer vision and pattern recognition, pp. 4104–4113, 2016.

Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra:
a hybrid representation for high-resolution 3d shape synthesis. In Advances in Neural Information
Processing Systems (NeurIPS), 2021.

Tianchang Shen, Jacob Munkberg, Jon Hasselgren, Kangxue Yin, Zian Wang, Wenzheng Chen, Zan
Gojcic, Sanja Fidler, Nicholas Sharp, and Jun Gao. Flexible isosurface extraction for gradient-
based mesh optimization. ACM Trans. Graph., 42(4), jul 2023. ISSN 0730-0301. doi: 10.1145/
3592430. URL https://doi.org/10.1145/3592430.

12

https://doi.org/10.1145/15886.15902
https://doi.org/10.1145/15886.15902
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
http://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting/
https://doi.org/10.1145/2343483.2343493
https://github.com/NVlabs/tiny-cuda-nn
https://github.com/NVlabs/tiny-cuda-nn
https://doi.org/10.1145/3592430

Yahao Shi, Yanmin Wu, Chenming Wu, Xing Liu, Chen Zhao, Haocheng Feng, Jingtuo Liu,
Liangjun Zhang, Jian Zhang, Bin Zhou, Errui Ding, and Jingdong Wang. Gir: 3d gaussian inverse
rendering for relightable scene factorization. Arxiv, 2023.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T Barron, and Pratul P Srini-
vasan. Ref-nerf: Structured view-dependent appearance for neural radiance fields. In 2022
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5481–5490.
IEEE, 2022a.

Dor Verbin, Peter Hedman, Ben Mildenhall, Todd Zickler, Jonathan T. Barron, and Pratul P. Srini-
vasan. Ref-NeRF: Structured view-dependent appearance for neural radiance fields. CVPR,
2022b.

Bruce Walter, Stephen R. Marschner, Hongsong Li, and Kenneth E. Torrance. Microfacet models
for refraction through rough surfaces. In Proceedings of the 18th Eurographics Conference on
Rendering Techniques, EGSR’07, pp. 195–206, Goslar, DEU, 2007. Eurographics Association.
ISBN 9783905673524.

Peng Wang, Lingjie Liu, Yuan Liu, Christian Theobalt, Taku Komura, and Wenping Wang. Neus:
Learning neural implicit surfaces by volume rendering for multi-view reconstruction. NeurIPS,
2021.

Haodong Xiang, Xinghui Li, Xiansong Lai, Wanting Zhang, Zhichao Liao, Kai Cheng, and Xueping
Liu. Gaussianroom: Improving 3d gaussian splatting with sdf guidance and monocular cues for
indoor scene reconstruction, 2024. URL https://arxiv.org/abs/2405.19671.

Lior Yariv, Jiatao Gu, Yoni Kasten, and Yaron Lipman. Volume rendering of neural implicit surfaces.
In Thirty-Fifth Conference on Neural Information Processing Systems, 2021.

Mulin Yu, Tao Lu, Linning Xu, Lihan Jiang, Yuanbo Xiangli, and Bo Dai. Gsdf: 3dgs meets sdf
for improved rendering and reconstruction, 2024. URL https://arxiv.org/abs/2403.
16964.

Kai Zhang, Fujun Luan, Qianqian Wang, Kavita Bala, and Noah Snavely. PhySG: Inverse rendering
with spherical gaussians for physics-based material editing and relighting. In The IEEE/CVF
Conference on Computer Vision and Pattern Recognition (CVPR), 2021a.

Xiuming Zhang, Pratul P Srinivasan, Boyang Deng, Paul Debevec, William T Freeman, and
Jonathan T Barron. Nerfactor: Neural factorization of shape and reflectance under an unknown
illumination. ACM Transactions on Graphics (ToG), 40(6):1–18, 2021b.

Yuanqing Zhang, Jiaming Sun, Xingyi He, Huan Fu, Rongfei Jia, and Xiaowei Zhou. Modeling
indirect illumination for inverse rendering. In CVPR, 2022.

Matthias Zwicker, Jussi Rasanen, Mario Botsch, Carsten Dachsbacher, and Mark Pauly. Perspective
accurate splatting. In Proceedings-Graphics Interface, pp. 247–254, 2004.

13

https://arxiv.org/abs/2405.19671
https://arxiv.org/abs/2403.16964
https://arxiv.org/abs/2403.16964

A APPENDIX

In the appendix, we provide a comprehensive explanation about the details of our work, including
detailed implementations and limitations of our method, as well as supplementary results from both
quantitative and qualitative experiments.

First, we provide an in-depth explanation for the MGadapter in Sec. B, followed by a discussion of
the implementation details for our loss functions in Sec. C. Next, to further explore the limitations of
our method, we present an ablation study of the input mask required during training in Sec. D, along
with various failure cases and their corresponding analysis in Sec. E. Lastly, we provide additional
results from NVS experiments and relighting experiments in Sec. F.

B EXPLANATION OF MGADAPTER

B.1 OVERVIEW

We first describe the details of our MGadapter. As discussed in Sec. 3.1, the MGadapter takes a
triangle mesh as input and generates a set of Gaussian points corresponding to the mesh’s shape.
The core idea of MGadapter is to ensure that the shape of the triangle mesh aligns with that of
the Gaussian points, serving as a differentiable adapter between the two. However, since Gaussian
points lack the discrete geometric boundaries present in meshes, we define geometric alignment
as follows: given a triangle face, we can sample several viewpoints and render the triangle from
them. The geometric alignment is then measured by difference between the rendered mesh and the
rendered Gaussian points (e.g. L1 loss on depth maps).

The intuitive implementation of our MGadapter involves sampling several Gaussian points on the
mesh surface. These points are then optimized in terms of scale and rotation to minimize the depth
map difference between the Gaussian points and the target mesh. However, this approach introduces
an additional optimization step that must be re-executed each time the mesh is modified, resulting
in reduced optimization efficiency and an unstable training process.

Instead of performing geometric alignment in real-time, we propose utilizing a predefined heuristic
function T , to achieve an approximate alignment. As described in Eq. 1, the MGadapter T takes
arbitrary triangle meshes as input and outputs Gaussian point attributes, including position µ, scale
S, rotation R, and normal n. This process acts as a generalized adapter between the input meshes
and the corresponding Gaussian points. In Sec. B.2, we provide a detailed explanation of Eq. 1.
Then, we discuss the implementation of the surface adjustment in Sec. B.4, which is critical for
Gaussian point rendering. Finally, we explain how to query Gaussian point attributes from a spatial
MLP in B.5 and explain the warm-up stage in B.3.

B.2 EXPLANATION OF EQ. 1

Specifically, given the triangle mesh, each triangle face Fi comprises three vertices Pi =
(pi1, pi2, pi3) with their vertex normals Ni = (ni1, ni2, ni3). We symmetrically sample 6 points
on Fi with barycentric coordinates:

b1 = (u, u, 1− 2u) b2 = (u, 1− 2u, u) b3 = (1− 2u, u, u)

b4 = (v, v, 1− 2v) b5 = (v, 1− 2v, v) b6 = (1− 2v, v, v)
(7)

And we can obtain 6 midpoints mjk:

m12 =
b1 + b2

2
=

(
u,

1− u

2
,
1− u

2

)
m45 =

b4 + b5
2

=

(
v,

1− v

2
,
1− v

2

)
m23 =

b2 + b3
2

=

(
1− u

2
,
1− u

2
, u

)
m56 =

b5 + b6
2

=

(
1− v

2
,
1− v

2
, v

)
m31 =

b3 + b1
2

=

(
1− u

2
, u,

1− u

2

)
m64 =

b6 + b4
2

=

(
1− v

2
, v,

1− v

2

) (8)

14

Given an attribute Ai = (ai1, ai2, ai3) defined at the triangle vertices, we represent the barycentric
interpolation as:

(b1, b2, b3)⊙Ai = b1ai1 + b2ai2 + b3ai3 (9)

Then, for each midpoint mjk (jk = 12, 23, 31, 45, 56, 64), we sample a Gaussian point as:

µ = mjk ⊙ Pi n = mjk ⊙Ni

Sx = αjk∥bk ⊙ Pi −mjk ⊙ Pi∥2 Rx =
bk ⊙ Pi −mjk ⊙ Pi

∥bk ⊙ Pi −mjk ⊙ Pi∥2

Sy =
Area(Fi)

βjk∥bk ⊙ Pi −mjk ⊙ Pi∥2
Ry = n×Rx

Sz = δjk Rz = n

(10)

Here, Eq. 10 provide the formulation of our heuristic function T , with u, v, αjk, βjk, δjk as hyper-
parameters. To achieve the generalized geometric alignment, we practically set these parameters as
follows:

u = 0.07

v = 0.22

α12 = α23 = α31 = 0.80

α45 = α56 = α64 = 2.08

β12 = β23 = β31 = 15.0

β45 = β56 = β64 = 13.0

δ12 = δ23 = δ31 = δ45 = δ56 = δ64 = 4.5× 10−5

(11)

B.3 EXPLANATION OF WARM-UP STAGE

Next, we explain the warm-up stage during training. As outlined in Sec. B.2, we typically sample
six Gaussian points from each triangle surface. However, during the initial training stage when
the underlying mesh has not yet converged, there can be an excessive number of triangle slices, as
illustrated in Fig. 11. Sampling six Gaussian points per face in this scenario can result in significant
memory costs and reduced training efficiency.

Figure 11: Initial mesh
slices of FlexiCubes.

To address this issue, we implement a warm-up stage for MGadapter
at the beginning of training (covering the first 2%). During this phase,
MGadapter outputs a significantly reduced number of Gaussian points by
performing vertex sampling. Specifically, MGadapter samples a single
Gaussian point from each mesh vertex and assigns its normal to match
the corresponding vertex normal. For the scales and rotations of the sam-
pled Gaussian points, we utilize two small spatial MLPs to learn these
attributes. Once the warm-up stage concludes, the two spatial MLPs are
discarded, and the scales and rotations are afterwards computed as de-
scribed in Sec. B.2.

B.4 EXPLANATION OF SURFACE ADJUSTMENT

By applying Eq. 10, we obtain a set of Gaussian points that lie exactly on the surface. However, as
mentioned in Sec. 3.1, strictly positioning the Gaussian points on the surface can negatively impact
rendering quality, particularly near the boundaries between distinct texture colors.

Figure 12: Inconsistent Sorting. The vanilla 3D splatting algorithm produces multi-
view-inconsistent depths, leading to varying blending sequences across different views.

15

(a) w/o SA (b) w/ SA (c) Heatmap

Figure 13: Surface Adjustment (SA)
Explanation. (a) PSNR: 31.9dB; (b)
PSNR: 33.5dB; (c) Magnitude of SA.

This issue primarily arises from the approximations
made during the projection transformation of 3DGS,
as noted in Zwicker et al. (2004). These approxima-
tions lead to multi-view-inconsistent sorting in the over-
lapping regions between two surface-aligned Gaussian
points, as illustrated in Fig. 12. Consequently, Gaus-
sian points near color boundaries struggle to learn a
consistent appearance. Fig. 13(a) presents rendering re-
sults when Gaussian points are strictly positioned on the
surface, further demonstrating this problem. However,
upon noticing vanilla 3DGS can achieve high rendering
quality despite the projection approximations, we per-
form further analysis and found it automatically learns
to position those boundary Gaussians deeper, placing them beneath the actual surface. This adjust-
ment results in a consistent depth sorting. Therefore, in our MGadapter, we also allow Gaussian
points to learn a small offset along the normal direction, which can significantly enhance rendering
quality, as demonstrated in Fig. 13(b). The magnitude of this surface adjustment (measured by ∥v∥)
is visualized in Fig. 13(c), highlighting larger adjustments near the color boundaries.

The depth error from the projection approximation in 3DGS has also been discussed in recent work,
specifically 2DGS Huang et al. (2024). Rather than applying 3D splatting to flat Gaussian points,
2DGS employs a ray-splat intersection algorithm to ensure depth-precise rendering, resulting in a
view-consistent appearance. However, when integrating the 2D splatting algorithm into our pipeline
without surface adjustment, we observe strong floater artifacts which are illustrated in Fig. 14, prob-
ably due to the incompatibility between 2DGS and FlexiCubes. Specifically, as noted in the original
paper, 2D Gaussian points can degenerate into a line when observed from a slanted viewpoint. In
this context, 2DGS renders these Gaussian points differently and we empirically find it causing Flex-
iCubes to struggle with reducing mesh slices shown in Fig. 11, leading to unwanted floaters. We
conducted a quantitative analysis comparing the two splatting algorithms, with results presented in
Tbl. 4, demonstrating the incompatibility between 2DGS and FlexiCubes. Consequently, we have
chosen to employ 3D splatting instead.

(a) 3D Splatting (28.43dB) (b) 2D Splatting (26.52dB)

Figure 14: Qualitative Comparison between 2D Splatting and 3D Splatting. Pro-
ducing incorrect rendering results for tiny surfels, 2DGS encounters challenges in reduc-
ing the triangle slices initially generated by FlexiCubes, leading to noticeable floaters.

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
Ours (3D splatting) 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52
Ours (2D splatting) 29.44 23.71 26.34 31.18 29.86 26.52 28.21 25.22 27.56

Table 4: Splatting algorithm comparison on NeRF dataset (PSNR↑).

B.5 EXPLANATION OF SPATIAL MLP

Lastly, we discuss how to model PBR attributes and surface adjustments on Gaussian points. Since
Gaussian points are generated in real time from the underlying mesh, directly modeling these at-
tributes as learnable parameters is impractical due to the varying number of Gaussian points during
training. Instead, we employ a spatial MLP F to construct an attribute field, as mentioned in Sec. 3.3.

16

Specifically, the spatial MLP incorporates the multi-resolution hash encoding introduced in Müller
et al. (2022), followed by a compact MLP. For any spatial coordinate p ∈ [−1, 1]3, the spatial MLP
outputs F (p) ∈ RC . Implemented using tiny-cuda-nn Müller (2021), we utilize two spatial MLPs,
FPBR and FSA, to model PBR attributes and surface adjustments, respectively. Detailed parameters
can be found in Tbl. 5.

Module Parameter Value
Number of levels 16
Max.entries per level (hash table size) 219

FPBR/FSA HashEnc Number of feature dimensions per entry 2
Coarsest resolution 32
Finest resolution 4096
MLP layers 32× 32× 32× 6

FPBR MLP Initialization Kaiming-uniform
Final activation Sigmoid
MLP layers 32× 32× 1

FSA MLP Initialization Kaiming-uniform
Final activation None

Table 5: Parameters of Spatial MLP

C DETAILS OF LOSS FUNCTIONS

C.1 PHOTOMETRIC TERM

During the training stage, for each view i, GeoSplatting differentiably renders a RGB image I(i)pred ∈
RH×W×3 and takes the alpha channel as the mask M

(i)
pred ∈ RH×W×1. Given the ground truth I

(i)
gt

and M
(i)
gt under the view i, the photometric loss is computed as:

Lphoto = L1 + λssimLSSIM + λmaskLmask

= ∥I(i)gt − I
(i)
pred∥1 + λssimSSIM(I

(i)
gt , I

(i)
pred) + λmask∥M (i)

gt −M
(i)
pred∥2

(12)

Here, λssim = 0.2 and λmask = 5.0 for all the cases.

C.2 ENTROPY REGULARIZATION TERM

Following DMTet and Flexicubes Shen et al. (2021; 2023), we add an entropy loss to constrain the
shape. Specifically, we employ Flexicubes as the underlying geometric representation, which defines
a scalar function ζ : R3 → R on the underlying cube grids G(V, E) and then extracts isosurfaces via
the differential Dual Marching Cubes introduced by Shen et al. (2023). Given an edge (vi, vj) from
edge set E , the SDF values defined on the endpoints vi, vj are respectively ζ(vi) and ζ(vj).

Then, we can compute the regularization term as:

Lsdf =
∑

(vi,vj)∈E,sgn(ζ(vi)) ̸=sgn(ζ(vj))

H(ζ(vi), sgn(ζ(vj))) +H(ζ(vj), sgn(ζ(vi))) (13)

Here, H denotes the binary cross entropy. By encouraging the same sign of ζ, such a regularization
term penalize internal geometry and floaters.

C.3 SMOOTHNESS REGULARIZATION TERM

Following NVdiffrec and R3DG Munkberg et al. (2022); Gao et al. (2023), we apply smoothness
regularization on albedo, roughness and metallic to prevent dramatic high-frequency variations.
Given the positions µ of gaussian points, the albedo, roughness and metallic attributes are generated
from the spatial MLP:

17

(v, kd, r,m, cr) = F (µ) (14)

While applying a small perturbation on µ can yield a different set of attributes:

(
v′, k′d, r

′,m′, cr ′
)
= F (µ+∆µ) (15)

The smoothness are computed as:

Lsmooth = λalbedo∥kd − k′d∥1 + ∥r − r′∥1 + ∥m−m′∥1 (16)

Here, λalbedo = 6.0.

C.4 LIGHT REGULARIZATION TERM

Following NVdiffrec and R3DG Munkberg et al. (2022); Gao et al. (2023), we add white balance
regularization to prevent the albedo from being baked into the environment map.

Given a learnable environment map L ∈ R6×512×512×3 which can be splited into RGB channels
LR, LG, LB ∈ R6×512×512, the white balance regularization is computed as:

Llight =
1

3
(∥LR − LW ∥1 + ∥LG − LW ∥1 + ∥LB − LW ∥1) (17)

where LW = 1
3 (LR + LG + LB).

C.5 FINAL LOSS

The final loss L is computed as:

L = Lphoto + λsdfLsdf + λsmoothLsmooth + λlightLlight (18)

Here, λsdf is initially set to 0.2 at the start of the training stage and is linearly decreased to 0.01 by the
midpoint of the training. As for λsmooth and λlight, typical settings are λsmooth = 0.005, λlight =
0.0005. For highly specular objects, λlight should be set to a smaller value, such as 0.00001.

D ANALYSIS OF MASK

As discussed in Sec. C.1, our method requires input masks during the training stage. Specifically,
the mask term of the loss function in Eq. 12 is defined by the difference between the input masks
and our predicted masks. This dependency introduces a limitation, as real-world data must first be
segmented into foreground and background. To provide a comprehensive understanding, we present
an ablation study to illustrate how the dependency on input masks varies across different scenes.

D.1 OBJECT-LEVEL

Table 6 presents the performance differences in novel view synthesis (measured in terms of PSNR)
on the NeRF Synthetic Dataset, while qualitative comparison are shown in Fig. 15. The results
indicate that without the mask, our method has difficulty reconstructing smooth, convex surfaces
with specular highlights, as seen in Materials and Mic. Additionally, for objects with thin structures,
such as Ficus, performance significantly declines in the absence of the mask loss term. In contrast,
for the other five objects in the NeRF Synthetic Dataset, the ground truth mask is not essential for
achieving satisfactory results.

18

Method Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
Ours w/ mask (stage 1) 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52

Ours w/o mask (stage 1) 31.92 23.53 26.11 33.95 31.02 24.81 30.99 26.08 28.55
Difference -0.06 -1.00 -2.85 +0.10 +0.19 -3.62 -0.33 -0.15 -0.97

Ours w/ mask (stage 2) 34.71 26.05 33.48 36.40 34.47 29.66 34.62 29.17 32.32
Ours w/o mask (stage 2) 34.81 25.72 31.56 36.36 34.73 28.22 34.31 28.54 31.78

Difference +0.10 -0.33 -1.92 -0.04 +0.26 -1.44 -0.31 -0.63 -0.54

Table 6: Quantitative results of mask ablation study (PSNR↑).

M
ic

Fi
cu

s
M

at
er

ia
ls

Reference PBR w/ Mask Normal w/ Mask PBR w/o Mask Normal w/o Mask

Figure 15: Qualitative results of mask ablation study.

D.2 SCENE-LEVEL

Without input masks, our method will completely fail on scene-level cases, as illustrated in Fig. 16.
To extend our method from object-level decomposition to scene-level decomposition, a promising
direction is to explore how to eliminate the need for masks and to apply adaptive resolution to
accommodate detailed geometry.

Pl
ay

ro
om

Reference Rendering Normal

Figure 16: Failure on scene-level decomposition tasks.

19

E FAILURE CASES

We present a series of failure cases to illustrate the limitations of our method. The qualitative exam-
ples from both the synthetic dataset and the DTU Dataset highlight scenarios that lead to incorrect
decomposition or poor geometry.

E.1 THIN STRUCTURES

Sh
ip

A
ir

B
al

lo
on

s
Fi

cu
s

Ours (Stage 1) Ours (Stage 2) Reference

Figure 17: Failure cases of thin structures.

As discussed in Sec. 4.5, our method strug-
gles with thin structures in the first stage due
to grid resolution limitations. While the second
stage relaxes positional constraints on Gaussian
points to aid in recovering fine geometry, it still
cannot perfectly reconstruct thin structures due
to the absence of geometric guidance in Stage
2. Fig. 17 showcases failure cases involving the
Ficus, Ship, and Air Balloons.

E.2 INCONSISTENT LIGHTING

Variations in illumination conditions (e.g. ex-
posure and shadows) across multiple views
can lead to inconsistent lighting, especially for
datasets captured in real-world environments.
An illustrative example from DTU Dataset is
provided in Fig. 18, which demonstrates signifi-
cant illumination changes between View 38 and
View 40. Consequently, our method can produce incorrect decompositions in these scenes, result-
ing in overestimated metallic, noisy lighting, and distorted geometry near the inconsistent regions,
shown in Fig. 19.

V
ie

w
38

V
ie

w
40

Reference Rendering

Figure 18: Inconsistent lighting on Scan 24.

Normal Metallic

EnvLight

Figure 19: Incorrect decomposition.

E.3 UNDEREXPOSURE

Reference Rendering Normal

Figure 20: Underexposed views from DTU Scan 110.

Fig. 20 also illustrates a failure
case in which the reference im-
age is heavily underexposed. The
ambiguous material-lighting com-
position in this scenario results
in incorrect geometry recovery, as
our method optimizes both aspects
jointly.

20

F MORE RESULTS

F.1 MORE RESULTS ON NVS

We provide the full table that contains 8 scenes of NeRF Synthetic Dataset in Tbl. 7, as well as more
qualitative results in Fig. 21.

24.45dB 24.40dB 24.71dB 25.46dB 26.05dB

D
ru

m
s

31.16dB 28.51dB 31.34dB 33.04dB 33.48dB

Fi
cu

s

31.71dB 31.45dB 31.85dB 33.43dB 34.71dB

C
ha

ir

26.76dB 26.74dB 26.46dB 28.83dB 29.66dB

M
at

er
ia

ls

32.82dB 33.55dB 33.07dB 35.26dB 36.40dB

H
ot

do
g

NVdiffrec TensoIR R3DG GS-Shader Ours Reference

Figure 21: More qualitative NVS comparison on NeRF dataset. Our method effectively re-
covers complex geometries, detailed textures, and non-Lambertian appearances, as shown in the
sub-windows.

21

Method Relightable Chair Drums Ficus Hotdog Lego Materials Mic Ship Avg.
NeRF* No 33.00 25.01 30.13 36.18 32.54 29.62 32.91 28.65 31.00

MipNeRF* No 35.14 25.48 33.29 37.48 35.70 30.71 36.51 30.41 33.09
3DGS No 35.55 26.04 34.66 37.58 34.63 29.63 36.71 30.58 33.17

TensoIR Yes 31.45 24.40 28.51 33.55 32.20 26.74 31.59 27.78 29.53
NVdiffrec Yes 31.66 24.31 30.01 32.67 29.01 26.84 30.22 25.64 28.79

GS-IR Yes 29.34 23.84 28.27 32.80 33.66 25.92 30.45 27.27 28.94
R3DG Yes 31.85 24.71 31.34 33.07 32.69 26.46 32.74 28.32 30.15

GaussianShader Yes 33.43 25.46 33.04 35.26 33.03 28.83 34.06 28.49 31.45
Ours (stage 1) Yes 31.98 24.53 28.96 33.85 30.83 28.43 31.32 26.23 29.52
Ours (stage 2) Yes 34.71 26.05 33.48 36.40 34.47 29.66 34.62 29.17 32.32

Table 7: Detailed quantitative NVS Comparison on NeRF dataset (PSNR↑).

F.2 MORE RESULTS ON SYNTHESIC4RELIGHT DATASET

We provide all the other examples of Synthesic4Relight dataset in Fig. 22, Fig. 23 and Fig. 24.
Detailed quantitative results are shown in Table 8.

Scene Novel View Synthesis Relighting Albedo Roughness
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ MSE ↓

Air Balloons 36.08 0.9806 0.023 30.89 0.9617 0.041 26.14 0.9215 0.068 0.018
Chair 40.92 0.9892 0.007 32.68 0.9795 0.018 29.59 0.9549 0.056 0.007

Hotdog 38.49 0.9876 0.015 27.54 0.9573 0.053 28.23 0.9572 0.087 0.037
Jugs 39.48 0.9940 0.007 35.49 0.9859 0.014 32.38 0.9732 0.040 0.005
Avg. 39.20 0.9881 0.013 31.65 0.9713 0.032 29.21 0.9517 0.063 0.017

Table 8: Detailed quantitative results of GeoSplatting on Synthetic4Relight dataset.

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 22: Qualitative comparison on Air Balloons from Synthetic4Relight dataset.

22

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 23: Qualitative comparison on Chair from Synthetic4Relight dataset.

Albedo Roughness EnvLight Relight1 Relight2

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 24: Qualitative comparison on Hotdog from Synthetic4Relight dataset.

23

F.3 COMPARISON ON TENSOIR DATASET

Additionally, We perform comparison on TensoIR dataset. Qualitative results are provided in
Fig. 25. Quantitative comparison are shown in Table 9. While our method outperforms existing
relightable baselines in both novel view synthesis and relighting, it also achieves comparable perfor-
mance in albedo reconstruction. However, we observe a decrease in albedo reconstruction quality
when transitioning from Synthetic4Relight Dataset to TensoIR Dataset. This decline is primarily
due to our method partially incorporating shadows into the albedo, leading to less accurate albedo
for scenes with complicated occlusion (e.g. Lego from TensoIR Dataset), which presents an area for
improvement in future work.

Scene Method Novel View Synthesis Relighting Albedo
PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓ PSNR ↑ SSIM ↑ LPIPS ↓

NVdiffrec 34.31 0.986 0.025 26.59 0.925 0.050 30.51 0.953 0.068
TensoIR 37.92 0.975 0.042 34.31 0.975 0.025 33.11 0.957 0.057

Armadillo GS-IR 35.44 0.962 0.040 28.93 0.922 0.083 35.57 0.951 0.089
R3DG 39.54 0.981 0.032 32.44 0.951 0.068 32.89 0.954 0.076
Ours 43.68 0.993 0.005 34.63 0.970 0.024 31.58 0.958 0.042

NVdiffrec 27.77 0.966 0.051 23.00 0.938 0.070 25.38 0.950 0.057
TensoIR 29.78 0.949 0.037 24.28 0.946 0.061 27.74 0.968 0.030

Ficus GS-IR 20.71 0.853 0.100 25.01 0.871 0.078 29.52 0.888 0.090
R3DG 31.99 0.975 0.027 30.58 0.958 0.035 30.09 0.959 0.030
Ours 35.45 0.992 0.006 30.30 0.978 0.016 28.12 0.965 0.026

NVdiffrec 34.85 0.973 0.044 23.19 0.910 0.113 26.65 0.928 0.117
TensoIR 36.69 0.976 0.022 27.72 0.931 0.090 26.68 0.955 0.077

Hotdog GS-IR 31.65 0.961 0.042 20.40 0.889 0.112 21.34 0.907 0.127
R3DG 33.38 0.972 0.031 26.64 0.921 0.091 26.18 0.951 0.081
Ours 38.10 0.985 0.014 26.07 0.937 0.066 28.21 0.956 0.075

NVdiffrec 31.92 0.959 0.030 25.79 0.891 0.078 20.84 0.856 0.142
TensoIR 34.95 0.964 0.020 27.71 0.926 0.059 25.86 0.931 0.072

Lego GS-IR 31.72 0.940 0.036 23.05 0.853 0.089 20.76 0.823 0.159
R3DG 30.47 0.947 0.036 24.54 0.878 0.095 25.79 0.916 0.102
Ours 37.07 0.981 0.011 27.15 0.920 0.053 22.06 0.887 0.113

NVdiffrec 32.21 0.971 0.037 24.64 0.916 0.078 25.84 0.922 0.096
TensoIR 34.84 0.966 0.030 28.51 0.945 0.059 28.35 0.953 0.059

Avg. GS-IR 29.88 0.929 0.055 24.35 0.884 0.091 26.80 0.892 0.116
R3DG 33.84 0.968 0.031 28.55 0.927 0.072 28.74 0.945 0.072
Ours 38.57 0.988 0.009 29.54 0.951 0.040 27.49 0.941 0.064

Table 9: Quantitative Results on the TensoIR Dataset. Note that we no longer report MSE on
roughness here, as TensoIR dataset does not provide its ground truth value.

Albedo EnvLight Relight1 Relight2 Relight3 Relight4

N
V

di
ff

re
c

R
3D

G
O

ur
s

R
ef

er
en

ce

Figure 25: Qualitative comparison on Armadillo from TensoIR dataset.

24

F.4 MORE RELIGHTING ON SYNTHETIC DATA

We provide more relighting results on synthetic data in Fig. 26, including Spot, Materials and Lego.

Albedo Relight1 Relight2 Relight3 Relight4 Relight5
Sp

ot

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

M
at

er
ia

ls

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

L
eg

o

Figure 26: Relighting on synthetic data.

25

F.5 RELIGHTING ON DTU DATASET

In Fig. 27, we also provide real-world relighting results from DTU Dataset.

Albedo Relight1 Relight2 Relight3 Relight4 Relight5
Sc

an
65

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

Sc
an

11
4

Albedo Relight1 Relight2 Relight3 Relight4 Relight5

Sc
an

11
8

Figure 27: Relighting on DTU dataset.

26

	Introduction
	Related Work
	Methodology
	Geometry Guided Gaussian Points Generation
	Physically-based Gaussian Rendering
	Implementation Details

	Experiments
	Performance on Novel View Synthesis
	Performance on Object decomposition & Relighting
	Performance on Geometry recovery
	Performance on Real-world Dataset
	Ablation Studies.

	Conclusion
	Appendix
	Explanation of MGadapter
	Overview
	Explanation of Eq. 1
	Explanation of Warm-up Stage
	Explanation of Surface Adjustment
	Explanation of Spatial MLP

	Details of Loss Functions
	Photometric Term
	Entropy Regularization Term
	Smoothness Regularization Term
	Light Regularization Term
	Final Loss

	Analysis of Mask
	Object-Level
	Scene-Level

	Failure Cases
	Thin Structures
	Inconsistent Lighting
	Underexposure

	More Results
	More Results on NVS
	More Results on Synthesic4Relight Dataset
	Comparison on TensoIR Dataset
	More Relighting on Synthetic Data
	Relighting on DTU Dataset

